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History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation” to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift



History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS

2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of

De Feo, Kieffer, Smith to supersingular curves over I,
(CSIDH)

(History slides mostly stolen from Wouter Castryck)
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Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level

» Competitive speed: ~ 85ms for a full key exchange
» Flexible:

Compatible with 0-RTT protocols such as QUIC

[DG] uses CSIDH for ‘SeaSign’ signatures

[DGOPS] uses CSIDH for oblivious transfer

[FTY] uses CSIDH for authenticated group key exchange

v
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CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very

little in common, and are likely to be useful for different applications

Here is a comparison (mostly stolen from Luca de Feo):

CSIDH SIDH
Speed (NIST 1) 85ms ~ 10ms’
Public key size (NIST 1) 64B 378B
Key compression (speed) ~ 15ms
Key compression (size) 222B
Constant time implementation | yes (quick and dirty) yes
Submitted to NIST no yes
Maturity 7 months 7 years
Best classical attack pl/* pl/*
Best quantum attack subexponential 1/6
Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc
CPA security yes yes
CCA security yes Fujisaki-Okamoto
Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

This is a very conservative estimate!
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Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

~ Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:
HxS—S.




Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.
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Square-and-multiply

Suppose G = Z/23 and that Alice computes g'3
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Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.




Square-and-multiply
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Square-and-multiply
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Square-and-multiply

1g0 2
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Square-and-multiply

1g0 2

Cycles are compatible: [right, then left] = [left, then right], etc.
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Union of cycles: rapid mixing
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Union of cycles: rapid mixing

’ CSIDH: Nodes are now elliptic curves and edges are isogenies. ‘
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Graphs of elliptic curves
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Graphs of elliptic curves

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
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Graphs of elliptic curves

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
Edges: 3-, 5-, and 7-isogenies.
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Quantumifying Exponentiation

» We want to replace the exponentiation map

ZxG = G
(x,g) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Exc: yZ =x +Ax2 + x over Fyq9.

» Replace Z by a commutative group H... more details to
come!

» The action of a well-chosen i € H on S moves the elliptic
curves one step around one of the cycles.

7/13
2/ 37



Graphs of elliptic curves

A 3-isogeny
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Diffie-Hellman on ‘nice” graphs
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Diffie-Hellman on ‘nice” graphs
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A walkable graph

» Nodes: Supersingular elliptic curves E4: y? = x® + Ax? + x
over F419.
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» Nodes: Supersingular elliptic curves E4: y2 =3+ Ax* +x
over F419.

» Edges: 3-, 5-, and 7-isogenies (more details to come).



A walkable graph

» Nodes: Supersingular elliptic curves E4: yz =3+ Ax* +x
over F419.

» Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

IP1» The graph is a composition of compatible cycles.
IP2» We can compute neighbours in given directions.
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Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

» Anisogeny between two elliptic curves E — E’ is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

» Iff : E — E’ is an (-isogeny, there is a unique dual isogeny
f¥ : E' — E such that f¥ o f = [{] is the multiplication-by-¢
map on E.

» The dual isogeny is also an ¢-isogeny.



Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.
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Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are
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Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» Generally, the G, look something like
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Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.
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Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

» Equivalently: every node in G, should be distance zero
from the cycle.

» Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.
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Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).

19 /37



Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).

Example
Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

[n]: E — E
P — nP

is an endomorphism.
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Towards IP1: Endomorphism rings
Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).
Example
Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

[n]: E — E
P — nP
is an endomorphism.
» The Frobenius map
m: E E

.
(xy) = (F,yF)

is an endomorphism.

19 /37



Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F)-rational endomorphisms.
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Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F)-rational endomorphisms.

Example

Letp > 3,let E/F) : y* = x° + Ax? + x be a supersingular elliptic
curve, and let 7 be the Frobenius endomorphism. Then

Tom = [—p]
and
Zl\/=p) — End]Fp(E)
n — [n]
Ve T

extends Z-linearly to a ring homomorphism.

20/ 37
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Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x° + Ax*> + x is
supersingular, then Endy, (E4) = Z[/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fp:y* = x° + Ax* + xwithp =3 (mod 8) and p > 5.

» The group H = CI(Z[,/~p]) is the class group of Endy, (Ex)
for (every) E4 € S.

» What is the action?

N



Towards IP1: Group action
» LetI C Endp,(Ea) be an ideal.
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Towards IP1: Group action

» LetI C Endp,(Ea) be an ideal.
» Then

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).
» Define
fr:E— E/H;
to be the isogeny from E with kernel Hj.
» For [I] € CI(Z],/=p)), let I be an integral representative of
the ideal class [I]. Then

ClZ[/=p]) xS — S
(1], E) = fu,(E)

is a free, transitive group action!



IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x®> + Ax? + x with p = 3 (mod 8)
and p > 5.
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IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x®> + Ax? + x with p = 3 (mod 8)
and p > 5.

» The map

Clz[/=p]) xS — S

(1], E) = i (E)
is a free, transitive group action.
> Edges are the isogenies fp, (together with their duals).

~+ there is a choice of {1, ..., ¢, such that G, U--- UGy, isa
composition of compatible cycles (IP1).

N
@



Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.
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Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

CUZ[/=) xS — 5
([1]715) = ij(E) = [I] *E.

» For ¢ e {¢1,---,{,} as before and [I] € CI(Z[\,/—p]), the
isogeny fr. (E) is an {-isogeny if and only if
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Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

CUZ[/=P]) x S — S
(1, E) — fu(E) = [[]  E.

» For ¢ e {¢1,---,{,} as before and [I] € CI(Z[\,/—p]), the
isogeny fr. (E) is an {-isogeny if and only if

I = [(¢,m £ 1)].

» Choosing the direction in the graph corresponds to
choosing this sign.



Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.
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To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

» Let E/FF, be supersingular and p > 5.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

» Let E/IF, be supersingular and p > 5. Then E(F,) = C,11 or
C2 X C(p+1)/2.

» Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., P} using
Vélu's formulas (implemented in Sage).

Let E/IF, be supersingular and p > 5. Then E(F,) = Cp1 or
C2 X C(p+1)/2.

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

For every odd prime ¢|(p + 1), the point #P is a point of
order /.
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Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

Let E/IF, be supersingular and p > 5. Then E(F,) = Cp1 or
C2 X C(p+1)/2.

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

For every odd prime ¢|(p + 1), the point #P is a point of
order /.

Given a [F,-rational point of order /, the isogeny
computations can be done over F,.

N
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IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):
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its ¢(-isogeny graph G, for odd ¢|(p + 1):
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» Find a basis {P, Q} of the (-torsion with P € F,.
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Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.

Find a basis {P, Q} of the /-torsion with P € F,,.

1 € Z/{Z is an eigenvalue of Frobenius on the /-torsion; the
action [(¢, ™ — 1)] x E gives an (-isogeny in the '+ direction.
The other eigenvalue of Frobenius is p/\ € Z/{Z.

If p=—1 (mod ¢) then the action [(¢, 7 + 1)] % E gives an
(-isogeny in the "’ direction.
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IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F,, in its /-isogeny graph G, for odd /|(p + 1)?
Choosing p = 4/; - - - ¢, — 1 ensures:
» Every ¢j|(p + 1), so there is a rational basis point of the
{;-torsion

» p =3 (mod 8), so Gy, is a cycle (we have our group action)
» p=—1 (mod ¥¢;), so {;-isogenies come from action of
[<€1‘, T+ 1>]
Given the group action as above, Vélu's formulas give actual
isogenies!
With our design choices all isogeny computations are over F,,. ?

2You still need a little more to get computations for both the 4+ and —
directions to be over F,
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» Every node of Gy, is

Ea: y* =2+ Ax® +x.

= Can compress every node to a single value A € [,

= Tiny keys!
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Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E4 and check [p + 1]P = 003

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.
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Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree ¢{' - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(> ¢;¢;). An attacker
has to compute one isogeny of large degree (cf. isogeny
evaluation complexity from David Jao’s talk).

» Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from Ej to Eg4,
whereas an attacker has compute all the possible paths
from Ej.

» Best classical attacks are (variants of) meet-in-the-middle:

Time O(y/p).
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Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
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Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.
Childs-Jao-Soukharev [C]S] applied Kuperberg/Regev to
CRS - their attack also applies to CSIDH.

Part of CJS attack computes many paths in superposition.
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The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

Most previous analysis focussed on asymptotics

Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ~ 0.7 - 24° nonlinear bit operations.

For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 28! qubit
operations.*

“From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.
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Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).
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Hardware implementation.

v

More applications.

v

[Your paper here!]
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