CSIDH:

An Efficient Post-Quantum
Commutative Group Action

https:/ /csidh.isogeny.org

Wouter Castryck1 Tanja Lange2 Chloe Martindale?
Lorenz Panny® Joost Renes’

KU Leuven 2TU Eindhoven 3RU Nijmegen

ECC, Osaka, Japan, 21st November 2018

History

1976 Diffie-Hellman: Key exchange using exponentiation in
groups (DH)

1985 Koblitz-Miller: Diffie-Hellman style key exchange using
multiplication in elliptic curve groups (ECDH)

1990 Brassard-Yung: Generalizes ‘group exponentiation” to
‘groups acting on sets’ in a crypto context

1994 Shor: Polynomial-time quantum algorithm to break the
discrete logarithm problem in any group, quantumly
breaking DH and ECDH

1997 Couveignes: Post-quantum isogeny-based
Diffie-Hellman-style key exchange using commutative
group actions (not published at the time)

2003 Kuperberg: Subexponential-time quantum algorithm to
attack cryptosystems based on a hidden shift

History

2004 Stolbunov-Rostovtsev independently rediscover
Couveignes’ scheme (CRS)

2006 Charles-Goren-Lauter: Build hash function from
supersingular isogeny graph

2010 Childs-Jao-Soukharev: Apply Kuperberg’s (and Regev’s)
hidden shift subexponential quantum algorithm to CRS

2011 Jao-De Feo: Build Diffie-Hellman style key exchange from
supersingular isogeny graph (SIDH)

2018 De Feo-Kieffer-Smith: Apply new ideas to speed up CRS

2018 Castryck-Lange-Martindale-Panny-Renes: Apply ideas of

De Feo, Kieffer, Smith to supersingular curves over I,
(CSIDH)

(History slides mostly stolen from Wouter Castryck)

Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

5/37

Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level

Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level

» Competitive speed: ~ 85ms for a full key exchange

Why CSIDH?

» Drop-in post-quantum replacement for (EC)DH

» Non-interactive key exchange (full public-key validation);
previously an open problem post-quantumly

» Small keys: 64 bytes at conjectured AES-128 security level

» Competitive speed: ~ 85ms for a full key exchange
» Flexible:

Compatible with 0-RTT protocols such as QUIC

[DG] uses CSIDH for ‘SeaSign’ signatures

[DGOPS] uses CSIDH for oblivious transfer

[FTY] uses CSIDH for authenticated group key exchange

v

vYyy

CSIDH vs SIDH?

Apart from mathematical background, SIDH and CSIDH actually have very

little in common, and are likely to be useful for different applications

Here is a comparison (mostly stolen from Luca de Feo):

CSIDH SIDH
Speed (NIST 1) 85ms ~ 10ms’
Public key size (NIST 1) 64B 378B
Key compression (speed) ~ 15ms
Key compression (size) 222B
Constant time implementation | yes (quick and dirty) yes
Submitted to NIST no yes
Maturity 7 months 7 years
Best classical attack pl/* pl/*
Best quantum attack subexponential 1/6
Key size scales quadratically linearly
Security assumption isogeny walk problem ad hoc
CPA security yes yes
CCA security yes Fujisaki-Okamoto
Non-interactive key exchange yes unbearably slow
Signatures (classical) unbearably slow seconds
Signatures (quantum) seconds still seconds?

This is a very conservative estimate!

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Post-quantum Diffie-Hellman?

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

Post-quantum Diffie-Hellman!

Traditionally, Diffie-Hellman works in a group G via the map

ZxG — G
(x,8) — g~

Shor’s algorithm quantumly computes x from g* in any group
in polynomial time.

~ Idea:

Replace exponentiation on the group G by a group action of a
group H on a set S:
HxS—S.

Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.

1 g 2
g &g
g - N
&) .gzo
¢t g%
IS . g1
g . . gl
g g%
g g1
ge' °g14

Square-and-multiply

Suppose G = Z/23 and that Alice computes g'3

g7 g g16
8\ ¢ ® 15
g g
\. g
A N &
glO 1'1_>']2 g13

Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.

8/ 37

Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.

8/ 37

Square-and-multiply

Suppose G = 7Z,/23 and that Alice computes g'°.

Square-and-multiply
& L/l.A—g-O«.Z:\gﬂ
g3 .‘(o g g -8 g .\.820
48 8 R 19

2 0 2
6 s S $” 17
8§ K 2882 RS
o 28 8 "\}. 15
& K. g8
g0 f% .gZZk o3
12{'3 8 T 11
8 344;2 .%,ng
1492 3y
8T, BA
168 2 A7

9/37

Square-and-multiply

¢ : g & 21 4 & g0 21 19
3 ./.’.\.\. 0 6 g ./.’_.—\.\.g 17
! < &/ 8
84 ./ \.glg gS ./ \.815
gs [./ \.\glg glo./ \.\813
IS | * 17 glzi\ ’
I °\, ./° e gt .\. | ’
&\, /g SN\, J
9 Ne o g1 g8 N . g5
10 *—* 13 © | N
g g8
4 g0 19 7
g 8 15 - |
2T TN g (8 Se—el 8,
4 h g/ Vs
3/ N4 £/ :
g% "/ \.\ &8 g17[./ :
1. f z.
A 8]
&\) i
g b /.814
13'\. ./. /
g% e g
8 o gz g

9/37

Square-and-multiply

1g0 2

9/37

Square-and-multiply

1g0 2

Cycles are compatible: [right, then left] = [left, then right], etc.

9/37

Union of cycles: rapid mixing

N\
Bssa

N

10/37

Union of cycles: rapid mixing

’ CSIDH: Nodes are now elliptic curves and edges are isogenies. ‘

10 /37

Graphs of elliptic curves

\ 22]
l,',’- -‘\“I

11/37

Graphs of elliptic curves

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.

11/37

Graphs of elliptic curves

Nodes: Supersingular curves Ex: y* = x° + Ax® + x over Fao.
Edges: 3-, 5-, and 7-isogenies.

11/37

Quantumifying Exponentiation

» We want to replace the exponentiation map

ZxG = G
(x,g) — &

by a group action on a set.

» Replace G by the set S of supersingular elliptic curves
Exc: yZ =x +Ax2 + x over Fyq9.

» Replace Z by a commutative group H... more details to
come!

» The action of a well-chosen i € H on S moves the elliptic
curves one step around one of the cycles.

7/13
2/ 37

Graphs of elliptic curves

A 3-isogeny

(picture not toseale) _ _ — —

Esp: 2 =2>451x4x ——— Eg: > =x34+9224x

97x3 1832 4x
X2 183x497

1335 +154x% —5v-+97
—x3+65:2+128x—133

() |

y

b .

o——e
E199 Esoo Eno Epo

13 /37

ob
-, _|_]

9

B
+,+

[

14 /37

N\

Ar“\i ‘-¢0.~
Y WWA “‘0 g
VA

Diffie-Hellman on ‘nice” graphs

Alice
) +7 _]

9

[+

Diffie-Hellman on ‘nice” graphs

14 /37

Diffie-Hellman on ‘nice” graphs

14 /37

Diffie-Hellman on ‘nice” graphs

14 /37

Diffie-Hellman on ‘nice” graphs

TN

. I\ N \\\\
\ _
+ : S

14 /37

Diffie-Hellman on ‘nice” graphs

14 /37

Diffie-Hellman on ‘nice” graphs

Alice -
T]
D
TSN N

‘.'.""'!e:“““g"’A‘.‘,
OSSN

14 /37

Diffie-Hellman on ‘nice” graphs

\
Nt
SRS

14 /37

Diffie-Hellman on ‘nice” graphs

14 /37

Diffie-Hellman on ‘nice” graphs

14 /37

Diffie-Hellman on ‘nice” graphs

at

X
Yai NSsesr777 1 b
W«‘“ﬁ“ﬂtﬂﬂoﬂ%‘.ﬁl”
v la

VA

Bo%

14 /37

A walkable graph

» Nodes: Supersingular elliptic curves E4: y? = x® + Ax? + x
over F419.

15 /37

A walkable graph

» Nodes: Supersingular elliptic curves E4: y2 =3+ Ax* +x
over F419.

» Edges: 3-, 5-, and 7-isogenies (more details to come).

A walkable graph

» Nodes: Supersingular elliptic curves E4: yz =3+ Ax* +x
over F419.

» Edges: 3-, 5-, and 7-isogenies (more details to come).

Important properties for such a walk:

IP1» The graph is a composition of compatible cycles.
IP2» We can compute neighbours in given directions.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):
» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.
» Anisogeny between two elliptic curves E — E’ is a

surjective morphism (of abelian varieties) that preserves
the identity.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

» Anisogeny between two elliptic curves E — E’ is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

» Anisogeny between two elliptic curves E — E’ is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

» Iff : E — E’ is an (-isogeny, there is a unique dual isogeny
f¥ : E' — E such that f¥ o f = [{] is the multiplication-by-¢
map on E.

Towards IP1: Isogeny graphs

First some reminders (see eg. autumn school slides):

» An elliptic curve E/F, (for p > 5) is supersingular if
#E(F,) =p+1.

» Anisogeny between two elliptic curves E — E’ is a
surjective morphism (of abelian varieties) that preserves
the identity.

» For elliptic curves E, E’/F, and a prime ¢ # p, an (-isogeny
f : E — E'is an isogeny with # ker(f) = £.

» Iff : E — E’ is an (-isogeny, there is a unique dual isogeny
f¥ : E' — E such that f¥ o f = [{] is the multiplication-by-¢
map on E.

» The dual isogeny is also an ¢-isogeny.

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are

000000
- AN

. o
'~ /
e

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are

G52

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are

G72

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» In our example, these are

Se

fia\Y;
1 X
>

G3UGsUG7: 28

sy

Towards IP1: Isogeny graphs

Definition
Let p and ¢ be distinct primes. The isogeny graph G, containing
E/FF, is the graph with:
» Nodes: elliptic curves E'/F, with #E(F,) = #E'(F,) (up to
[Fy-isomorphism).
» Edges: we draw an edge E — E’ to represent an (-isogeny
f : E — E' together with its dual ¢-isogeny.

» Generally, the G, look something like

- O\ i RN
Sz NV
Gl Lo g =

ST S s =

TN
PN N\

¢
..........

Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

18 /37

Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

» Equivalently: every node in G, should be distance zero
from the cycle.

Towards IP1: Endomorphism rings

» We want to make sure Gy is a cycle.

» Equivalently: every node in G, should be distance zero
from the cycle.

» Two nodes are at different distances from the cycle if and
only if they have different endomorphism rings.

Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).

19 /37

Towards IP1: Endomorphism rings

Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).

Example
Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

[n]: E — E
P — nP

is an endomorphism.

19 /37

Towards IP1: Endomorphism rings
Definition
An endomorphism of an elliptic curve E is a morphism E — E
(as abelian varieties).
Example
Let E/IF, be an elliptic curve.
» For n € Z, the mulitplication-by-n map

[n]: E — E
P — nP
is an endomorphism.
» The Frobenius map
m: E E

.
(xy) = (F,yF)

is an endomorphism.

19 /37

Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F)-rational endomorphisms.

20/ 37

Towards IP1: Endomorphism rings

Definition
The [F)-rational endomorphism ring Endp, (E) of an elliptic
curve E/F, is the set of [F)-rational endomorphisms.

Example

Letp > 3,let E/F) : y* = x° + Ax? + x be a supersingular elliptic
curve, and let 7 be the Frobenius endomorphism. Then

Tom = [—p]
and
Zl\/=p) — End]Fp(E)
n — [n]
Ve T

extends Z-linearly to a ring homomorphism.

20/ 37

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x° + Ax*> + x is
supersingular, then Endy, (E4) = Z[/=p].

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x° + Ax*> + x is
supersingular, then Endy, (E4) = Z[/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

N

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x° + Ax*> + x is
supersingular, then Endy, (E4) = Z[/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fp:y* = x° + Ax* + xwithp =3 (mod 8) and p > 5.

N

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x° + Ax*> + x is
supersingular, then Endy, (E4) = Z[/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fp:y* = x° + Ax* + xwithp =3 (mod 8) and p > 5.

» The group H = CI(Z[,/~p]) is the class group of Endy, (Ex)
for (every) E4 € S.

N

Towards IP1: Group action

Forp =3 (mod 8) and p > 5,if E4/F, : y* = x° + Ax*> + x is
supersingular, then Endy, (E4) = Z[/=p].

» Remember: we want to replace exponentiation Z x G — G
with a commutative group action H x S — S.

» The set S is the set of supersingular elliptic curves
Ea/Fp:y* = x° + Ax* + xwithp =3 (mod 8) and p > 5.

» The group H = CI(Z[,/~p]) is the class group of Endy, (Ex)
for (every) E4 € S.

» What is the action?

N

Towards IP1: Group action
» LetI C Endp,(Ea) be an ideal.

22 /37

Towards IP1: Group action

» LetI C Endp,(Ea) be an ideal.
» Then

is a subgroup of E(F,).

22 /37

Towards IP1: Group action

» LetI C Endp,(Ea) be an ideal.
» Then

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).

Towards IP1: Group action

» LetI C Endp,(Ea) be an ideal.
» Then

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).
» Define
fr:E— E/H;

to be the isogeny from E with kernel Hj.

Towards IP1: Group action

» LetI C Endp,(Ea) be an ideal.
» Then

is a subgroup of E(F,).
» Recall that isogenies are uniquely defined by their kernels
(cf. First Isomorphism Theorem of Groups).
» Define
fr:E— E/H;
to be the isogeny from E with kernel Hj.
» For [I] € CI(Z],/=p)), let I be an integral representative of
the ideal class [I]. Then

ClZ[/=p]) xS — S
(1], E) = fu,(E)

is a free, transitive group action!

IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x®> + Ax? + x with p = 3 (mod 8)
and p > 5.

N
@

IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x®> + Ax? + x with p = 3 (mod 8)
and p > 5.

» The map

ClZ[y=p) xS — S
(1], E) = fu; (E)

is a free, transitive group action.

IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x®> + Ax? + x with p = 3 (mod 8)
and p > 5.

» The map

ClZ[y=p) xS — S
(1], E) = fu; (E)

is a free, transitive group action.

> Edges are the isogenies fp, (together with their duals).

IP1: The graph is a composition of compatible cycles

» The nodes of the graph are the set S of supersingular
elliptic curves E/F, : y* = x®> + Ax? + x with p = 3 (mod 8)
and p > 5.

» The map

Clz[/=p]) xS — S

(1], E) = i (E)
is a free, transitive group action.
> Edges are the isogenies fp, (together with their duals).

~+ there is a choice of {1, ..., ¢, such that G, U--- UGy, isa
composition of compatible cycles (IP1).

N
@

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

24 /37

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

ClzZly=p)) x S — s
([1]715) = fHI(E) =

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

CUZ[/=) xS — 5
([1]715) = ij(E) = [I] *E.

» For ¢ e {¢1,---,{,} as before and [I] € CI(Z[\,/—p]), the
isogeny fr. (E) is an {-isogeny if and only if

1 = [t £ 1))

Towards IP2: Choosing a direction

IP2: Compute neighbours in given directions.

» Our group action was:

CUZ[/=P]) x S — S
(1, E) — fu(E) = [[] E.

» For ¢ e {¢1,---,{,} as before and [I] € CI(Z[\,/—p]), the
isogeny fr. (E) is an {-isogeny if and only if

I = [(¢,m £ 1)].

» Choosing the direction in the graph corresponds to
choosing this sign.

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

» Let E/FF, be supersingular and p > 5.

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

» Let E/IF, be supersingular and p > 5. Then E(F,) = C,11 or
C2 % Cipry2-

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

» Find a point P of order / on E.

» Compute the isogeny with kernel {P,2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

» Let E/IF, be supersingular and p > 5. Then E(F,) = C,11 or
C2 X C(p+1)/2.

» Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., P} using
Vélu's formulas (implemented in Sage).

Let E/IF, be supersingular and p > 5. Then E(F,) = Cp1 or
C2 X C(p+1)/2.

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

For every odd prime ¢|(p + 1), the point #P is a point of
order /.

N
a1

Towards IP2: Computing the neighbours

To compute a neighbour of E, we have to compute an /-isogeny
from a given elliptic curve. To do this:

>

>

Find a point P of order ¢ on E.

Compute the isogeny with kernel {P, 2P, ..., ¢P} using
Vélu's formulas (implemented in Sage).

Let E/IF, be supersingular and p > 5. Then E(F,) = Cp1 or
C2 X C(p+1)/2.

Suppose we have found P = E(FF,) of order p + 1 or
(r+1)/2.

For every odd prime ¢|(p + 1), the point #P is a point of
order /.

Given a [F,-rational point of order /, the isogeny
computations can be done over F,.

N
a1

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):

» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):

» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.

» Find a basis {P, Q} of the (-torsion with P € F,.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the (-torsion with P € F,.

» 1 € Z/VZ is an eigenvalue of Frobenius on the ¢-torsion; the
action [(¢, ™ — 1)] x E gives an (-isogeny in the '+ direction.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):
» Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.
» Find a basis {P, Q} of the (-torsion with P € F,.
» 1 € Z/VZ is an eigenvalue of Frobenius on the ¢-torsion; the
action [(¢, ™ — 1)] x E gives an (-isogeny in the '+ direction.
» The other eigenvalue of Frobenius is p/\ € Z/VZ.

IP2: Computing neighbours in given directions

To compute the neighbours of supersingular E/F, with p > 5 in
its ¢(-isogeny graph G, for odd ¢|(p + 1):

>

v

v

v

v

Fix conditions as before so that G, is a cycle, i.e., E has two
neighbours.

Find a basis {P, Q} of the /-torsion with P € F,,.

1 € Z/{Z is an eigenvalue of Frobenius on the /-torsion; the
action [(¢, ™ — 1)] x E gives an (-isogeny in the '+ direction.
The other eigenvalue of Frobenius is p/\ € Z/{Z.

If p=—1 (mod ¢) then the action [(¢, 7 + 1)] % E gives an
(-isogeny in the "’ direction.

IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?
Choosing p = 4/; - - - ¢, — 1 ensures:
» Every ¢j|(p + 1), so there is a rational basis point of the
{;-torsion

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?
Choosing p = 4/; - - - ¢, — 1 ensures:
» Every ¢j|(p + 1), so there is a rational basis point of the
{;-torsion

» p =3 (mod 8), so Gy, is a cycle (we have our group action)

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F, in its /-isogeny graph G, for odd ¢|(p +1)?
Choosing p = 4/; - - - ¢, — 1 ensures:
» Every ¢j|(p + 1), so there is a rational basis point of the
{;-torsion
» p =3 (mod 8), so Gy, is a cycle (we have our group action)
» p=—1 (mod ¥¢;), so {;-isogenies come from action of
[<€1‘, T+ 1>]

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

IP2: Computing neighbours in given directions

For which ¢ can we (efficiently) compute the neighbours of
supersingular E/F,, in its /-isogeny graph G, for odd /|(p + 1)?
Choosing p = 4/; - - - ¢, — 1 ensures:
» Every ¢j|(p + 1), so there is a rational basis point of the
{;-torsion

» p =3 (mod 8), so Gy, is a cycle (we have our group action)
» p=—1 (mod ¥¢;), so {;-isogenies come from action of
[<€1‘, T+ 1>]
Given the group action as above, Vélu's formulas give actual
isogenies!
With our design choices all isogeny computations are over F,,. ?

2You still need a little more to get computations for both the 4+ and —
directions to be over F,

Representing nodes of the graph

» Every node of Gy, is

Ea: y* =2+ Ax® +x.

28 /37

Representing nodes of the graph

» Every node of Gy, is

Ea: y* =2+ Ax® +x.

= Can compress every node to a single value A € [,

28 /37

-

Representing nodes of the graph

» Every node of Gy, is

Ea: y* =2+ Ax® +x.

= Can compress every node to a single value A € [,

= Tiny keys!

28 /37

-

Does any A work?

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.

29 /37

Does any A work?

No.

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.

29 /37

Does any A work?

No.

» About ,/p of all A € F, are valid keys.

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.

29 /37

Does any A work?

No.

» About ,/p of all A € F, are valid keys.

» Public-key validation: Check that E4 has p + 1 points.
Easy Monte-Carlo algorithm: Pick random P on E4 and check [p + 1]P = 003

3This algorithm has a small chance of false positives, but we actually use a
variant that proves that E4 has p + 1 points.

29 /37

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

30/ 37

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree ¢{' - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(> e;¢;).

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree ¢{' - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(> ¢;¢;). An attacker
has to compute one isogeny of large degree (cf. isogeny
evaluation complexity from David Jao’s talk).

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree ¢{' - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(> ¢;¢;). An attacker
has to compute one isogeny of large degree (cf. isogeny
evaluation complexity from David Jao’s talk).

» Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from Ej to E»,
whereas an attacker has compute all the possible paths
from Ej.

Classical Security

» Security is based on the isogeny problem: given two
elliptic curves, compute an isogeny between them.

» Say Alice’s secret is isogeny is of degree ¢{' - - - ;' She
knows the path, so can do only small degree isogeny
computations, giving complexity O(> ¢;¢;). An attacker
has to compute one isogeny of large degree (cf. isogeny
evaluation complexity from David Jao’s talk).

» Alternative way of thinking about it: Alice has to compute
the isogeny corresponding to one path from Ej to Eg4,
whereas an attacker has compute all the possible paths
from Ej.

» Best classical attacks are (variants of) meet-in-the-middle:

Time O(y/p).

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
» Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
» Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

» Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).
» Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

» Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

» Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.

Quantum Security

Hidden-shift algorithms: Subexponential complexity
(Kuperberg, Regev).

>

Kuperberg’s algorithm [Kup1] requires a subexponential
number of queries, and a subexponential number of
operations on a subexponential number of qubits.

Variant by Regev [Reg] uses polynomial number of qubits
at the expense of time.

Kuperberg later [Kup2] gave more trade-off options for
quantum and classical memory vs. time.
Childs-Jao-Soukharev [C]S] applied Kuperberg/Regev to
CRS - their attack also applies to CSIDH.

Part of CJS attack computes many paths in superposition.

Quantum Security

» The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

Quantum Security

» The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

» Most previous analysis focussed on asymptotics

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

Quantum Security

» The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies
(and much more).
» Most previous analysis focussed on asymptotics

» Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ~ 0.7 - 24° nonlinear bit operations.

4From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

Quantum Security

>

The exact cost of the Kuperberg/Regev/CJS attack is
subtle — it depends on:

» Choice of time/memory trade-off (Regev/Kuperberg)
» Quantum evaluation of isogenies

(and much more).

Most previous analysis focussed on asymptotics

Recent preprint [BLMP] gives full computer-verified
simulation of quantum evaluation of isogenies. Computes
one query (i.e. CSIDH-512 group action) using
765325228976 ~ 0.7 - 24° nonlinear bit operations.

For fastest variant of Kuperberg (uses billions of qubits),
total cost of CSIDH-512 attack is about 28! qubit
operations.*

“From [BLMP], using query count of [BS]. [BS] also study quantum
evaluation of isogenies but their current preprint misses some costs.

Parameters

Ay1modas Tedrssed

128
256
448

Arowew yoeys

(a8ueydxa [ny) so[o4d

212e6 | 4368Db

(98uepxe Tny) swny

85ms

az1s Koy ayearrd

32b

64b
112b

az1s Aoy orpqnd

64b
128b
224D

[9A9[LSIN popusput

1
3
5

CSIDH-log p

CSIDH-512

CSIDH-1024
CSIDH-1792

Work in progress & future work

» Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

34 /37

Work in progress & future work

» Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

» Hardware implementation.

34 /37

Work in progress & future work

» Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

» Hardware implementation.

» More applications.

34 /37

Work in progress & future work

v

Fast and constant-time implementation. (For ideas on
constant-time optimization, see [BLMP], [MR]).

v

Hardware implementation.

v

More applications.

v

[Your paper here!]

34 /37

4
g%

References

Mentioned in this talk:

BLMP

BS

CLMPR

CJs

DG

DKS

Bernstein, Lange, Martindale, and Panny:

Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
https://quantum.isogeny.org

Bonnetain, Schrottenloher:

Quantum Security Analysis of CSIDH and Ordinary Isogeny-based Schemes
https://ia.cr/2018/537

Castryck, Lange, Martindale, Panny, Renes:

CSIDH: An Efficient Post-Quantum Commutative Group Action
https://ia.cr/2018/383

Childs, Jao, and Soukharev:

Constructing elliptic curve isogenies in quantum subexponential time
https://arxiv.org/abs/1012.4019

De Feo, Galbraith:

SeaSign: Compact isogeny signatures from class group actions
https://ia.cr/2018/824

De Feo, Kieffer, Smith:

Towards practical key exchange from ordinary isogeny graphs
https://ia.cr/2018/485

https://quantum.isogeny.org
https://ia.cr/2018/537
https://ia.cr/2018/383
https://arxiv.org/abs/1012.4019
https://ia.cr/2018/824
https://ia.cr/2018/485

References

Mentioned in this talk (contd.):

DOPS

FTY

MR

Kupl

Kup2

Reg

Delpech de Saint Guilhem, Orsini, Petit, and Smart:

Secure Oblivious Transfer from Semi-Commutative Masking

https://ia.cr/2018/648

Fujioka, Takashima, and Yoneyama:

One-Round Authenticated Group Key Exchange from Isogenies
https://eprint.iacr.org/2018/1033

Meyer, Reith:

A faster way to the CSIDH

https://ia.cr/2018/782

Kuperberg:

A subexponential-time quantum algorithm for the dihedral hidden subgroup problem
https://arxiv.org/abs/quant-ph/0302112

Kuperberg:

Another subexponential-time quantum algorithm for the dihedral hidden subgroup problem
https://arxiv.org/abs/1112.3333

Regev:

A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial
space

https://arxiv.org/abs/quant-ph/0406151

https://ia.cr/2018/648
https://eprint.iacr.org/2018/1033
https://ia.cr/2018/782
https://arxiv.org/abs/quant-ph/0302112
https://arxiv.org/abs/1112.3333
https://arxiv.org/abs/quant-ph/0406151

References

Further reading;:

BIJ Biasse, Iezzi, Jacobson:

A note on the security of CSIDH
https://arxiv.org/pdf/1806.03656

DPV Decru, Panny, and Vercauteren:
Faster SeaSign signatures through improved rejection sampling
https://eprint.iacr.org/2018/1109

JLLR Jao, LeGrow, Leonardi, Ruiz-Lopez:
A polynomial quantum space attack on CRS and CSIDH
(MathCrypt 2018)

Credits: thanks to Lorenz Panny for many of these slides, including all of the beautiful
pictures.

https://arxiv.org/pdf/1806.03656
https://eprint.iacr.org/2018/1109

